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Abstract

Because of the complexity of piezoelectric crack problems, it is hard to obtain closed-form solutions, and numerical
methods are largely resorted to. Hence, the upper/lower bound estimation of piezoelectric fracture parameters is of the-
oretical and practical importance. in this paper, the path-independent integral I, which is the dual of the J-integral, for
electro-mechanical coupling crack systems, is presented. The related bound theorems are established for J and I. Pie-
zoelectric dual finite elements are presented for the numerical implementation of the bound analysis. Moreover, an error
estimator is presented for the assessment of numerical accuracy of the piezoelectric fracture parameters.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

As an electro-mechanical coupling material, a piezoelectric ceramic is brittle and likely to crack at
all scales from domains to devices. Under mechanical and/or electrical loading, it can fail prematurely
due to the propagation of flaws or defects induced during the manufacturing process and by the in-service
electro-mechanical loading. Hence, it is necessary to understand, and be able to analyze, the fracture char-
acteristics of piezoelectric materials so as to predict reliable service life for the electro-mechanical coupling
system.
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Electro-mechanical modeling of piezoelectric fracture is complicated by the fact that piezoelectric mate-
rials exhibit electro–elastic coupling behavior as well as anisotropy behavior. Among the theoretical studies
of cracked piezoelectric bodies (see e.g. Chen et al., 1998; Chen and Karihaloo, 1999; and reviews by Zhang
et al., 2001; and Chen and Lu, 2002), permeable and impermeable conditions on the crack faces by Parton
(1976) and Deeg (1980), respectively, are most commonly adopted. Whichever condition is adopted on the
crack faces, it is hard to get the exact solutions except for a few simple cases, and numerical methods are
often resorted to (Kumar and Singh, 1996).

In the finite element (FE) analysis, the piezoelectric element of Allik and Hughes (1970) has been
employed in a large body of literature on linear electro-mechanical materials and/or structures. In this ele-
ment the basic variables, the displacement and electric potential are taken to be linear interpolations, hence
it is an isoparametric/compatible model. A further discussion on the piezoelectric model has been presented
by Landis (2002). In recent years, it has been found that the hybrid FE shows ideal numerical behavior in
the nonlinear electro-mechanical coupling analysis (see e.g. Ghandi and Hagood, 1997). To capture the
characteristic singularity at the crack tip, Wu et al. (2001) presented a piezoelectric hybrid model and sim-
ulated singular fields of a series of crack problems.

For the conventional elastic–plastic fracture problem, bound analyses for the path-independent inte-
grals have been suggested by Wu et al. (1998, 1999). In this paper, the upper/lower bound approach
will be extended to the piezoelectric fracture. To this end, the following topics will be considered for
the electro-mechanical coupling system: (1) Dual path-independent integrals for the piezoelectric
cracks; (2) Bound theorems for the dual crack parameters; (3) Dual piezoelectric FEs for the imple-
mentation of the upper/lower bound theorem; and finally (4) error estimation for the obtained numer-
ical solutions.
2. Dual path-independent integrals for electro-mechanical systems

Piezoelectric solids that have zero body forces and are free of electric charges are considered. The path
independent J-integral suggested by Rice (1968) has been extended to the piezoelectric crack analysis by
Pak (1990) and Suo et al. (1992). It is formulated as
Jðui;uÞ ¼
Z
S

Hðeij;EiÞdx2 � rijnj
oui
ox1

þ Djnj
ou
ox1

� �
ds

� �
ð1Þ
where ui, rij and eij = (ui,j + uj,i)/2 are displacements, stresses and strains, respectively, and xi are the Carte-
sian coordinates. S is a contour surrounding the crack tip in anticlockwise direction from the lower face to
the upper face of the crack. nj are direction cosines of the outward unit normal on S, and ds is an infini-
tesimal arc length along S. Di and u are the electric displacement and the electric potential, respectively.
The electric enthalpy density
Hðeij;EiÞ ¼ 1
2
cEijkleijekl � 1

2
2e

ijEiEj � eikleklEi ð2Þ
where Ei = �u,i are the electric field strengths, cEijkl are the (short circuit) material elastic stiffness constants
measured at constant electric field, 2e

ij are the (sandwiched) dielectric constants measured at constant strain,
and eikl are the piezoelectric stress constants. The corresponding constitutive relationships are
rij ¼ cEijklekl � ekijEk and Di ¼ eiklekl þ 2e
ikEk ð3Þ
The system potential energy functional can be formulated as
Ppðui;uÞ ¼
Z
v
Hðeij;EiÞadv�

Z
Ss

T iuidsþ
Z
Sw

�qsuds ð4Þ
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v denotes the domain of the two-dimensional body. Ss denotes the boundary portion on which the pre-
scribed traction T i is acting and Sw denotes the boundary portion on which the prescribed surface
charge density �qs is acting. The charge density is defined as q = �Dini. Thus, integral (1) can be
zexpressed as
Jðui;uÞ ¼ �dPp=da ð5Þ
i.e. the energy release rate for the piezoelectric crack system. Here, a denotes crack length. In order to build
the dual of J(ui, u), initially we consider the dual of Rice�s J, i.e. the complementary energy release rate of
Wu et al. (1998, 1999):
I�ðrij; uiÞ ¼
Z
S

�BðrijÞdx2 þ ri2
oui
oxj

dxj

� �
ð6Þ
where B(rij) is the complementary energy function. The above path-independent integral I* defined for the
conventional elastic–plastic materials can easily be extended to piezoelectric cracks by adding only the elec-
tric energy induced by the electric field Di and u. In this way, the desired piezoelectric crack parameter,
which is the dual of Pak�s J in Eq. (1), can be formulated as
Iðrij; ui;DiÞ ¼
Z
S

�Gðrij;DiÞdx2 þ ri2
oui
oxj

þ D2

ou
oxj

� �
dxj

� �
ð7Þ
where the complementary electric enthalpy density
Gðrij;DiÞ ¼ 1
2
sDijklrijrkl � 1

2
br
ijDiDj þ gkijrijDk ð8Þ
sDijkl are the (open circuit) material elastic compliance constants measured at constant electric displacement,
br
ij are the (free) dielectric insulating rate constants measured at constant stress, and gikl are the piezoelectric

potential constants. The constitutive relationships (3) can be rewritten as
eij ¼ sDijklrkl þ gkijDk and Ei ¼ �gijkrjk þ br
ijDj ð9Þ
it is easy to verify that
Hðeij;EiÞ þ Gðrij;DiÞ ¼ rijeij � DiEi ð10Þ

For a given piezoelectric crack system, the following relationship
Iðrij; ui;DiÞ ¼ dPc=da ð11Þ

can be verified by the method used by Wu et al. (1998). In (11) the system complementary energy
functional
Pcðrij;DiÞ ¼
Z
v
Gðrij;DiÞdv�

Z
Su

uirijnjds�
Z
Su

uDjnjds ð12Þ
where Su denotes the boundary portion on which the prescribed displacements �ui are acting and Su denotes
the boundary portion on which the prescribed electric potential �u is acting.

With the use of the divergence theorem, we have
Z
v
Hðeij;EiÞdv ¼ 1

2

I
ov

ðT iui � quÞds ¼
Z
v
Gðrij;DiÞdv ð13Þ
where ov represents the boundary of domain v.



5416 C.C. Wu, Q.Z. Xiao / International Journal of Solids and Structures 42 (2005) 5413–5425
3. Bound theorems

For conventional homogenous elastic or elastic–plastic materials, bound analyses for crack parameters
have been suggested by Wu et al. (1998, 1999). These analyses can be extended to electro-mechanical sys-
tems. It is well known, various upper/lower bound analyses depend on the positive definiteness of a given
mathematical/physical parameter. For the present piezoelectric system, the related electric enthalpy and
complementary electric enthalpy densities are both assumed to be positive definite, i.e.
Hðeij;EiÞ > 0 and Gðrij;DiÞ > 0 ð14Þ
3.1. Lower bound theorem for J(ui,u)

For a given piezoelectric crack system with homogeneous boundary constraints �uijSu ¼ 0, �ujSu ¼ 0, the
approximate J-integral based on the potential energy principle takes the lower bound of its actual one:
Jðeui; euÞ 6 Jðui;uÞ ð15Þ

Here, (ui,u) and ðeui; euÞ are respectively the actual solution and the solution given by the displacement-
electric potential compatible FE.

Proof. Let eui ¼ ui þ dui and eu ¼ uþ du. dui and du are respectively the virtual displacement and electric
potential, which satisfy ui/u homogeneous boundary conditions. Thus the approximate potential energy
can be expressed as
Ppðeui; euÞ ¼ Ppðui;uÞ þ dPp þ d2Pp ð16Þ

Here, dPp = 0 corresponds to the stationary condition of the system potential energy, and
d2Pp ¼ Ppðeui; euÞ �Ppðui;uÞ ¼
Z
v
Hðdui; duÞdv P 0 ð17Þ
In accordance with relationship (5),
Jðeui; euÞ ¼ � d

da
Ppðeui; euÞ ¼ � d

da
Ppðui;uÞ þ d2Pp

� �
¼ Jðui;uÞ þ d2J ð18Þ
and
Jðui;uÞ ¼ � d

da
Ppðui;uÞ ¼

d

da

Z
v
Hðui;uÞdv P 0 ð19Þ

d2J ¼ � d
da

d2Pp ¼ � d

da

Z
v
Hðdui; duÞdv ð20Þ
Note that (13) has been used in (19). Observing that H(ui,u) and H(dui,du) are of the same form, a com-
parison of (19) and (20) shows that d2J 6 0, and it follows from (18) that the inequality (15) must be
true. h
3.2. Upper bound theorem for I(rij, ui,Di)

For a given piezoelectric crack system with homogeneous boundary constraints �uijSu ¼ 0, �ujSu ¼ 0, the
approximate solution to the I-integral based on the complementary energy principle takes the upper bound
of its actual one:
Iðerij; eui; eDiÞ P Iðrij; ui;DiÞ ð21Þ
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where (rij,ui,Di) and ðerij; eui; eDiÞ are respectively the actual solution and the solution given by the stress-
electric displacement equilibrium FE.

Proof. Let erij ¼ rij þ drij and eDi ¼ Di þ dDi. drij and dDi are the virtual stresses and electric
displacements, respectively. we have
Pcðerij; eDiÞ ¼ Pcðrij;DiÞ þ dPc þ d2Pc ð22Þ
Here, dPc = 0 corresponds to the functional stationary condition. Moreover, accounting for the homoge-
neous constraints �uijSu ¼ 0 and �ujSu ¼ 0 the first and third terms on the right hand side of (22) becomes (see
Eq. (12))
Pcðrij;DiÞ ¼
Z
v
Gðrij;DiÞdv ð23Þ

d2Pc ¼
Z
v
Gðdrij; dDiÞdv ð24Þ
together with Eqs. (22)–(24), Eq. (11) becomes
Iðerij; eui; eDiÞ ¼
d

da
Pcðerij; eDiÞ ¼ Iðrij; ui;DiÞ þ d2I ð25Þ

Iðrij; ui;DiÞ ¼
d

da
Pcðrij;DiÞ ¼

d

da

Z
v
Gðrij;DiÞdv P 0 ð26Þ

d2I ¼ d

da
d2Pc ¼

d

da

Z
v
Gðdrij; dDiÞdv ð27Þ
Observing that both G(rij,Di) and G(drij,dDi) have the same form, a comparison of (26) and (27) results in
d2I P 0, and it follows from (25) that the inequality (21) must be true. h
4. Limitations on the bound analysis

It should be noticed that the above bound theorems are conditional for piezoelectric fracture. The lower
bound theorem for J depends on the positive definiteness of the electric enthalpy density: H(eij,Ei) > 0; and
the upper bound theorem for I depends on the positive definiteness of the complementary electric enthalpy
density: G(rij,Di) > 0. The complexity lies in that the positive definiteness of H and/or G depends on the
electric loading. In the case of large electric loading (Ei and/or Di) the electric enthalpy or complementary
electric enthalpy density, is likely to lose its positive definiteness, so that the bound theorems no longer
hold.

Take a mode I crack as an illustrative example, the energy release rate can be expressed as (Park and
Sun, 1995)
G ¼ 1
2
p½Ar2

1 þ Br1D1 � CD2
1� ð28Þ
in which r1 and D1 are the respective mechanical and electric loading far from the crack tip. Then the
non-negativity condition, G > 0 leads to the following requirement for the loading ratio q = D1/r1
Aþ Bq� Cq2 > 0 ð29Þ

The inequality (29) shows the limitations on the bound theorems, alluded to above.
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5. Piezoelectric finite elements

As for the plane fracture problem, the 4-node piezoelectric isoparametric/compatible element, denoted
as PZT-Q4, can easily be formulated in terms of the assumed bilinear displacement and electric potential.
The resulting model can be employed to estimate the lower bound of J(ui,ui) as mentioned in the lower
bound theorem. On the other hand, for I(rij,ui,Di), its upper bound should be estimated by the stress-elec-
tric displacement equilibrium element of Fraeijs de Veubeke type (Fraeijs de Veubeke, 1965). Unfortunately
it is hard to obtain a reliable equilibrium model for 2D/3D problems because numerical difficulties, such as
element rank deficiency, cannot be avoided. On the other hand, for equilibrium models using only the stress
as primary variables (see e.g. Duflot and Nguyen-Dang, 2002), which satisfy a priori the equilibrium and
constitutive equations and approximate only the compatibility equations, the recovery of displacements
is troublesome. One faces the problem of how to implement the upper bound theorem for I(rij,ui,Di).

It is observed that the Reissner functional PR(ui,rij,u,Di) of EerNisse (1983) reduces to the complemen-
tary energy functional Pc(rij,Di) in (12) after the enforcement of equilibrium constraints rij,j = 0 and
Di,i = 0. Therefore, the hybrid model based on PR(ui,rij,u,Di) will be equivalent to the equilibrium model
based on Pc(rij,Di) when the rij � Di equilibrium equations are enforced on the element.

A 4-node piezoelectric hybrid element can be developed from the Reissner principle of EerNisse (1983).
The element displacements and electric potential are assumed as bilinear interpolations:
u

v

u

8><
>:

9>=
>; ¼ 1

4

X4

i¼1

ð1þ ninÞð1þ gigÞ
ui
vi
ui

8><
>:

9>=
>; ¼ Nq; q ¼ fu1; v1;u1; . . . ; u4; v4;u4g

T
; u ¼

u

v

� �
ð30Þ
where (ni,gi) represent the isoparametric co-ordinates of node ‘‘i’’ with the global co-ordinates
(xi,yi), i = 1,2,3,4. (ui,vi,/i) are the displacements and electric potential at node ‘‘i’’. The stress mode of Pian
and Sumihara (1984) is adopted as the element trial stresses
r ¼
rx

ry

sxy

8><
>:

9>=
>; ¼

1 0 0 a23n a21g

0 1 0 b23n b21g

0 0 1 a3b3n a1b1g

2
64

3
75

b1

..

.

b5

8>><
>>:

9>>=
>>; ¼ Pmbm ð31Þ
wherein the element geometric parameters are
a1 b1
a2 b2
a3 b3

2
64

3
75 ¼ 1

4

�1 1 1 �1

1 �1 1 �1

�1 �1 1 1

2
64

3
75

x1 y1
x2 y2
x3 y3
x4 y4

2
6664

3
7775
The element electric displacement is initially assumed to be a linear function of the element n � g coordi-
nates. After introducing an energy consistency condition (Liu and Wu, 1999), it can be optimized into the
form
D ¼
Dx

Dy

� �
¼

1 0 a3n a1g

0 1 b3n b1g

� � b6

..

.

b9

8>><
>>:

9>>=
>>; ¼ Pebe ð32Þ
In terms of the element trial functions (30)–(32), Reissner energy functional (EerNisse, 1983) for an indi-
vidual element can be formulated as (boundary terms are ignored for simplicity, as they are identical to
the isoparametric/compatible model)
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Pe
Rðu; r;u;DÞ ¼ �

Z
ve
½Gðr;DÞ � rTðouÞ �DTðruÞ�dv ð33Þ
ou is the element strain, and $ the gradient operator. Substitution of the element trial functions (30)–(32)
into Eq. (33) results in
Pe
Rðb; qÞ ¼ bTGq� 1

2
bTHb ð34Þ

G ¼
Z
ve
PTðoNÞdv; H ¼

Z
ve
PTSPdv and P ¼

Pm 03�4

02�5 Pe

� �
; S ¼ s gT

g �br

� �
ð35Þ
wherein oN is the element generalized strain matrix. The functional stationary condition dPe
Rðb; qÞ ¼ 0 with

respect to b ¼ bm
be

� �
results in Hb = Gq. After condensing b functional (34) becomes
Pe
R ¼ 1

2
qTKeq ð36Þ
with element stiffness matrix
Ke ¼ GTH�1G ð37Þ

In view of the fact that it is difficult to build a stress–electric displacement equilibrium element directly,

the penalty-equilibrium technique developed by Wu and Cheung (1995) for conventional mechanical mate-
rials is employed here. Functional Pe

Rðui; rij;u;DiÞ is generalized as
Pe
RG ¼ Pe

R � a
Z
ve
rij;jrij;jdvþ

Z
ve
Di;iDi;idv

� �
ð38Þ
where the penalty factor a is taken to be a large constant (e.g. 104). In terms of the assumed element trial
functions (30)–(32), the functional (38) can be formulated as
Pe
RGðb; qÞ ¼ bTGq� 1

2
bTHb� abTHpb ð39Þ
where the penalty equilibrium matrix is
Hp ¼
Z
ve
ðoTPÞTðoTPÞdv ðoT is the equilibrium differential operatorÞ ð40Þ
In this way, the equilibrium equations, rij,j = 0 and Di,i = 0, are enforced within the element in a penalty
sense, so that the functional Pe

Rðui; rij;u;DiÞ ) Pe
cðrij;DiÞ, and the complementary energy functional is

available. It turns out that the hybrid element based on Pe
R will degenerate into a stress equilibrium model

based on Pe
c and can be used to implement the upper bound theorem. The resulting penalty-equilibrium

element is called as PZT-PS(a).
In the numerical calculations using the isoparametric element (e.g. PZT-Q4), the traction free and elec-

tric displacement free conditions on the crack surface cannot be imposed. On the other hand, these homo-
geneous traction/electric displacement conditions can easily be imposed by the present hybrid element since
the stress and electric displacement are independently assumed in the element formulation. Numerical solu-
tions by hybrid elements are more stable and the accuracy of the singular stress/electric displacement in the
crack tip region is significantly improved (Wu et al., 2001).
6. Error estimation

Liebowitz et al. (1998) investigated the development of an adaptive FE method for fracture related prob-
lems based on the Zienkiewicz and Zhu (1987) stress recovery based error estimator.
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A more natural way for crack problems is to estimate directly the error of fracture parameters. Wu et al.
(1999) presented an error estimator for Rice�s J-like crack parameters based on the bound theorems. Here
the formula will be extended to electro-mechanical crack problems.

Let dui ¼ eui � ui be the displacement error and du ¼ eu � u the electric potential error induced by using
the assumed displacement-electric potential FE(e.g. PZT-Q4). in accordance with the lower bound theorem
(15), the exact error for J-integral must be
Jðdui; duÞ ¼ Jðeui; euÞ � Jðui;uÞ 6 0 ð41Þ
and the absolute error is then
Jðdui; duÞj j ¼ Jðui;uÞ � Jðeui; euÞ ð42Þ
Let drij ¼ erij � rij be the stress error and dDI ¼ eDI � DI the electric displacement error induced by using
the stress-electric displacement (penalty) equilibrium element (e.g. PZT-PS(a)). In accordance with the
upper bound theorem (21) the exact error for I-integral should be
Iðdrij; dui; dDiÞ ¼ Iðerij; eui; eDiÞ � Iðrij; ui;DiÞ P 0 ð43Þ
and the absolute error
Iðdrij; dui; dDiÞ
		 		 ¼ Iðerij; eui; eDiÞ � Iðrij; ui;DiÞ ð44Þ
The relative errors corresponding to Eqs. (42) and (44) can be expressed as
DJ ¼
j Jðdui; duÞ j

Jðui;uÞ
and DI ¼

j Iðdrij; dui; dDiÞ j
Iðrij; ui;DiÞ

ð45Þ
respectively. These errors are, however, difficult to calculate in practical applications since the exact value of
J or I is generally not available. In order to develop an error estimator that is easy to calculate, an alter-
native relative error formula is defined as the following:
DJ�I ¼
j Jðdui; duÞ j þ j Iðdrij; dui; dDiÞ j

Jðui;uÞ þ Iðrij; ui;DiÞ
ð46Þ
wherein the reference solution is chosen as
Jðui;uÞ þ Iðrij; ui;DiÞ ¼ Jðeui; euÞ þ Iðerij; eui; eDÞ � ½Jðdui; duÞ þ Iðdrij; dui; dDiÞ� ð47Þ
As J(dui,du) 6 0 and I(drij,dui,dDi) P 0 are small quantities, the last term in Eq. (47) can be ignored, so
that Eq. (47) becomes
Jðui;uÞ þ Iðrij; ui;DiÞ � Jðeui; euÞ þ Iðerij; eui; eDiÞ ð48Þ
Substituting Eqs. (42), (44) and (48) into (46), and noting that for the exact solutions,
J(ui,u) � I(rij,ui,Di) = 0, the relative error formula (46) becomes
DJ�I �
Iðerij; eui; eDiÞ � Jðeui; euÞ
Iðerij; eui; eDiÞ þ Jðeui; euÞ ð49Þ
When the FE size tends to zero, i.e. h ! 0, the convergence of FE results guarantees that
Jðeui; euÞ ! Jðui;/Þ, and Iðerij; eui; eDiÞ ! Iðrij; ui;Di), hence the above relative error DJ�I ! 0. The error
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estimation formula (49) depends on the numerical solutions to J and I only, so it is easy to implement in the
crack parameter assessment.

In the case of pure mechanical loading, Di and eu will disappear from formula (49), one then has the fol-
lowing error estimation formula of Wu et al. (1999) for pure mechanical crack problems
DJ�I ¼
Iðerij; euiÞ � JðeuiÞ
Iðerij; euiÞ þ JðeuiÞ

ð50Þ
7. Numerical examples

In numerical calculations, the piezoelectric isoparametric/compatible element PZT-Q4 and the piezoelec-
tric penalty-equilibrium element PZT-PS(a) are employed to estimate J and I, respectively. A center cracked
square panel CCP (Fig. 1) with pure mechanical loading or mechanical-electrical mixed loading is consid-
ered. traction-free and impermeable (i.e. having zero electric displacement) boundary conditions are
assumed on the crack faces. plane strain conditions are considered in the numerical computations. only
a quarter of the specimen (shaded part) needs to be considered because of symmetry. The material pro-
perties of PZT-4 and PZT-5H are listed in Table 1.

To inspect the convergence behavior of the numerical solutions of J and I, three meshes with different
densities, as shown in Fig. 2, are considered for each material. Two independent integration paths (Fig.
2) are used simultaneously. The value of J/I is taken to be the average of results from these two paths.
Numerical results are shown in Figs. 3 and 4. for the finite specimen considered, no theoretical solution
is available. The ‘‘exact solution’’ in Figs. 3 and 4 illustrates the converged value of J or I with mesh refine-
ment. It can be seen that for mechanical and/or electrical loadings, the J-solutions by the PZT-Q4 compat-
ible element always converge to the exact one from below. On the contrary, the I-solutions by the
PZT-PS(a) penalty-equilibrium element always converge to the exact one from above. These numerical
solutions demonstrate the bound theorems.
2a  = 2

σ∞ D∞

σ∞ D∞

y

x

Poled direction

Fig. 1. Center cracked square panel (CCP) with side length of 8.



Table 1
Material constants for PZT-4 and PZT-5H (Ci: 10 GNm�2, ei: cm

�2, 2i: lCV
�1m�1)

C11 C12 C13 C33 C44 e31 e33 e15 211 233

PZT-4 13.9 7.7 7.43 11.3 2.56 �6.98 13.84 13.44 6.00 5.47
PZT-5 12.6 5.5 5.30 11.7 3.53 �6.50 23.30 17.00 15.1 13.0

mesh I
Path 1
Path 2

mesh II
Path 1
Path 2

mesh III
Path 1 
Path 2 

Fig. 2. The employed FE meshes and the selected integral paths.
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The error estimation formula (49) is implemented to estimate the relative error of the numerical solutions
for the piezoelectric CCP–specimen. The results listed in Tables 2 and 3 clearly show that the relative error
converges to zero with an increase in the employed elements. These numerical tests exhibit the efficiency of
the proposed error estimation.
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Fig. 4. Convergence of J and I with mesh refinement (PZT-5H). (a) load 1: D1 = 0, r1 = 1.0; (b) load 2: D1 = 1.0 · 10�10,r1 = 1.0.

Table 2
Relative Error DJ�I (%) for CCP (PZT-4)

Mesh I (16 elements) Mesh II (64 elements) Mesh III (256 elements)

Load 1: D1 = 0, r1 = 1.0 10.968 4.549 1.248
Load 2: D1 = 1.0 · 10 � 10, r = 1.0 8.261 3.438 1.614

Table 3
Relative error DJ�I (%) for CCP (PZT-5H)

Mesh I (16 elements) Mesh II (64 elements) Mesh III (256 elements)

Load 1: D1 = 0, r1 = 1.0 8.901 3.560 1.606
Load 2: D1 = 1.0 · 10 � 10, r1 = 1.0 7.694 3.068 1.409
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8. Conclusions

The proposed I-integral, as the dual of the J-integral, makes the dual analysis for piezoelectric fracture
possible. Under the precondition (14) the following bound relationships are available:
Jðeui; euÞ 6 Jðui;uÞ ¼ Iðrij; ui;DiÞ 6 Iðerij; eui; eDiÞ ð51Þ

The lower bound of J can be estimated by the piezoelectric compatible element PZT-Q4.
The upper bound of I can be estimated by the piezoelectric penalty-equilibrium hybrid element PZT-

PS(a), proposed in the present work.
The proposed error estimation formula (49) makes a quantitative error estimation to the crack para-

meter without requiring any reference solutions. It is easier to implement than the exact relative error for-
mula (45).

This study considered only linear piezoelectric elasticity. Obviously it is straightforward to extend it to
nonlinear piezoelectric elasticity. The coefficient 1/2 in Eqs. (2),(8), and (13) needs to be replaced by the
ratio of the strain energy density to the product of stresses and strains for the particular material. More-
over, the ratio of the strain energy density to the complementary energy density needs to be introduced
in (49).
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